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Abstract. Potts clusters are conneded sets of nearest neighbour sites for which the Potts 
variable is in the same state. At criticality there exists a fractal cluster. Using arguments 
from the renormalization group, conformal invariance and numerical simulations, we 
determine the bulk, surface, hull and red bond dimension of these clusters as a function 
of the number of Potts states. 

The study of fractal growth phenomena has led to a new interest in geometrical 
properties of spin systems. Geometrical concepts are nowadays regularly used in the 
Siiidji of iaitice spin modeis;. We can iiiiiik, e.g., of ihe 'dropiei' picture iniroduced for 
low-dimensional spin glasses [l], or the effective Monte Carlo methods which are 
based on the use of suitably defined clusters [2]. 

In the present letter we present results for the fractal properties of clusters in the 
two-dimensional Potts model [3] at criticality. By cluster we mean sets of nearest 
neighbour sites for which the spins are in the same state. The work presented here 
extends earlier results for the particular case of the Ising model [4,5]. The clusters 
studied here have to be distinguished from the so-called droplets, which will be defined 
below, and whose fractal properties have been determined exactly recently [6,7]. 

In the q-state Potts model, one has at each site of a regular lattice a spin variable 
uj which can be in q different states, ui = 1,. . . , q. The spin interaction is given by the 
reduced Hamiltonian 

In d = 2 and for h = 0, this model has a phase transition at some K,(q)  which for 
q G q. = 4 is of second order [8]. For q > qc, the transition is first order. The Hamiltonian 
(1) defines a problem of correlated site percolation for the above defined clusters. 
Indeed for K + m, h =Of, one expects that all sites will have U = 1. Upon increasing 
the temperature the probability P that a given site of the lattice belongs to the 'infinite' 
(i.e. lattice spanning) cluster of spins in state 1 will decrease. It was shown rigorously 
by Coniglio and Peruggi [ 9 ]  that the percolation threshold for this correlated site 
percolation problem precisely coincides with K,(q) .  For K + K , ( q )  from above, we 
therefore expect: 

P =  A ( K  - K c ( q ) ) p ~ ~ .  (2) 
- 
'lhe criticai exponent ope, has no aprIorI reason (and indeed turns out notj to be equal 
to the thermodynamic /3 exponent of the Potts model. Now, given (2). finite size scaling 
[lo] implies that at K, (q )  in a finite system (e.g. a circle of radius R )  we have; 

P(k,) - R-@mr'"mr. (3) 

0305-4470/92/020075+06$04.50 0 1992 IOP Publishing Ltd L75 



L76 Letter to the Editor 

This result implies that the ’infinite’ cluster at K ,  is a fractal of fractal dimension [ l l ]  
D = d -&.,/up.,. Besides this bulk fractal dimension we will also be interested in the 
fractal dimension DR of red bonds [12] and the fractal dimension D ,  of the hull [12] 
of the infinite cluster (at KJ. Finally, we will also determine the surface fractal 
dimension Ds [13] which is only defined for semi-infinite systems; it gives thedimension 
of sites which are both at the surface and in the ‘infinite’ cluster. The main result of 
this paper is the determination of these four fractal dimensions for 1 ~ q s 4 ;  see 
equations (7) and (8) and (10) and (11). In table 1 we give results for some integer 
q-values. 

Table 1. Bulk (D) ,  surface (9). hull (D,) and red-band (D,) fractal dimensions of Potts 
clusters for some integer q values. 

1 2 1 413 4 / 1 2  
2 187196 516 11/8 -518 

4 1518 0 312 0 
3 153l80 315 17/12 -17160 

We now shortly outline the way in which these results were obtained. A more 
detailed account will be given elsewhere. First, we have to extend our correlated site 
percolation problem to a correlated site-bond (cse) problem in which we place, at 
random, bonds (with probability p )  between the sites of a Potts cluster. 

In order to study the properties of the CSB clusters we need a percolative generating 
function [ 141. This generating function can be defined in terms of the average number 
(per site) of clusters of s sites, n,(K, h, p ) ;  

f ( K , h , p , H ) = I  nAKh,p)exp(-sH) (4) 

where H is a ‘ghost’ magnetic field [ 141. A key result forf was determined by Coniglio 
and Peruggi [9]. They introduced a ’Potts diluted‘-Potts model (Po) in which one 
couples the original Potts variables U to other s-state Potts variables through the 
Hamiltonian: 

( 5 )  - PHP~P = --BHp+ J 1 - 1 + H I ( % , I  - 1)&, I . 
(a,,) 

They could then show the following relations; f=dF/ds( ,= ,  if p =  I-exp(-J) ( F  is 
the free energy of the Hamiltonian (5)). For the particular choice J = K the CSB clusters 
are called droplets and their percolative properties can be completely related to 
thermodynamic properties of the Potts model (1) 191. Because the Potts model can be 
mapped onto the Coulomb gas [15], exact results for fractal dimensions of droplets 
can be obtained by that technique [6,7]. 

The clusters which interest us here are those at p = 1.  We will determine some of 
their properties by combining arguments from conformal invariance, the renormaliz- 
ation group (RG),  and numerical calculations. A first point to remark is that in the 
limit s = 1 the free energy F will become independent of the variable J (H = 0). This 
free energy in turn uniquely determines the so-called central charge c, which in the 
theory of conformal invariance at critical points is a crucial quantity [16,171. This 
central charge, which is only defined at scale invariant points, i.e. RG fixed points, is 
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thus the same at all fixed points which lie on the same line of constant K and h in 
( K ,  h, p)  space. At its critical point K = K,(q) ,  h =0,  the central charge of the Potts 
model is given by [I81 c = l - 6 / m ( m + l )  where m is related to q by G= 
2 cos(r/(m + 1)). In the plane p = 0, we have for the rest only trivial fixed points where 
c = 0. Zamolodchikov’s theorem [ 191 (if applicable to these non-unitary theories which 
we study here), which states that the central charge cannot increase along a RG 

trajectory, now implies that for q > 1 (i.e. c > 0) all fixed points on the line K = K J q )  
h = 0 must be repulsive in directions perpendicular to the line. What about the RG flow 
along the line? The point at p = 0 is the critical Potts model and can have only two 
relevant eigenvalues (associated with IK - K,I and h), and thus the eigenvalue in the 
J direction must be irrelevant. There must be two more fixed points along the line 
K = K, (q ) ,  h =O; one at p = 1 -exp(-K,) describing critical droplets, another one at 
still higher p values which coincides with or attracts the critical Potts droplets at p = 1. 

point is fully repulsive and separates the low-J from the high-J region. The complete 
RG flow is shown in figure I .  It is satisfying that this picture, which we have derived 
here on quite general grounds, is precisely the one which was found in a Migdal- 
Kadanoff RG study of Hamiltonian (5) [9]. Secondly, when q = 1 it can be seen that 
f will become independent of K and h that the whole CSB percolation problem reduces 
to (uncorrelated) random bond percolation. In that limit, the RC flow is of course 
precisely that which we have derived above for the critical line K = K , ( q ) ,  h =O.  Our 
clusters then coincide with the completely trivial fully occupied lattice of bonds at 
p = 1 (so evidently D = 2 for q = l ) ,  while the droplets are the usual percolation ‘clusters’ 
at the percolation threshold. For q > 1, the clusters also become non-trivial and their 
fractal properties are determined by the scaling properties near the tricritical fixed 
point ‘I’ in figure 1 .  Conformal invariance is once again very helpful here. Indeed, for 
a given value of the central charge, conformal invariance restricts the possible values 
of RO eigenvalues y. For a given m, y can only take on the values y , ,  where: 

n.e simp!est pictcrc cnfislsicsi wi:h a!! these reqni:em-:s is. :ha: the d:*p!C: Bxcd 

yp,4 = 2-[((m + 1)p - mq)*- 1)]/2m(m+ I ) .  ( 6 )  
Here p and q are restricted to be integers (or half integers [17,20]. For example, the 

.1 

Cluster-flred + ‘1’ 
POlnt 

t TriwoI fixed Doint h 

K’ 

Flgure 1. Renormalization group Raw for the ‘Potts diluted-Potts model (equation (5)) 
for H =0, p = 1 -exp(-J). Fixed points are denoted by crosses. 
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thermal eigenvalue y ,  of the Potts model is given by y2,1 while the magnetic eigenvalue 
y, equals ~ ( ~ + , ) / ~ . ( , , - ~ ) / 2  [IS]. These eigenvalues also describe the flow away from the 
critical line at non-zero p .  The third relevant eigenvalue y, at the droplet fixed point 
was determined by Coniglio [7] to be y,.,+,=(4m+1)/2m(m+l). This has a very 
important consequence, not pointed out in [71. When q + 4  (m+m),  we have y,-tO. 
Such a marginal eigenvalue is always associated with the coalescence of two fixed 
points. Clearly, the droplet fixed point cannot coalesce with the pure Potts fixed point, 

together. Remember that q = qc= 4 also is the critical value above which the Potts 
transition becomes first order (it is interesting to note that in the approximate RG of 
[9] such a coalescence is indeed observed at the value q = 16). Figure 2 shows the flow 
along the critical line, as a function of 9. Notice the similarity between this picture 
and the RG flow of the Potts model including annealed vacancies [ZI]. Our results 
imply that at q = 4 clusters and droplets become identical. Because of the eigenvalue 
y, = 0, we expect logarithmic corrections in geometric quantities at q = 4 [22]. We thus 
recover in the cluster-droplet properties of the Potts model a behaviour which is well 
known for its thermal properties [21]. 

ju w-e coiic;u& ibai aj y goej io 4 ihe &op;ei an: c:usiei fixe: poini ri,uji come 

1 2 3 L 
q 

Figure 1. The critical line ( K  = KJqI, h = 0) as a function of q shows the line of droplet 
fixed points (known exactly and shown here for the square lattice case) and the line of 
cluster fired points (whose precise location is unknown) which coalesce at q = 4. 

The fractal dimensions of king clusters (i.e. the special case q = 2) were recently 
determined from a mapping onto the tricritical one-state Potts model [4,5]. Such a 
mapping is not possible for general q. Yet, we are still able to determine the fractal 
dimensions of Potts clusters combining the results presented so far. 

Indeed, we know D and Ds for q =  1 (relation to bond percolation), q = 2  
(equivalence with tricritical one-state Potts model) and for q = 4  (where clusters are 
droplets). Combining this with the knowledge of the central charge c and the limited 
sets of values for y given by (6 ) ,  uniquely determines D and Ds as a function of q. 
The result is 

D = Y , / ~ , , / ~  = (15m2+ 16m+4)/8m(m+ 1) 

Ds = ~ 4 , ~  = (4m - 2)/m(m + 1). 

(7) 

(8) 

andt 

t For surface critical exponents, possible values are given by y ' = y , , / 2  where y,, is given by (61 
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We have checked our predictions for q = 3 (m = 5)  numerically. The technique we used 
was applied earlier to the case of the king clusters [SI. For systems of finite size R 
(in our case squares of side R, for 8 s R S 3 6 )  we calculated with a Monte Carlo 
technique the percolative susceptibility x defined as 

d' 
(9) X ( Y  h ) = s f ( Y  h , P =  1, H)IH-o=E s2n*(Y h , P =  1) 

which is a finite system at criticality should diverge as R**(-2+2D) [lo]. From our 
data we find D = 1.91 iO.01, in excellent agreement with the prediction from (7) 
D= 153/80= 1.9125. A similar agreement between numerical and exact result was 
found for the case q = 2 [SI. It is interesting to remark that recently estimates for D 
for q = 2 , 3  and 4 were calculated using the fixed scale transformation [23], a technique 
introduced to calculate analytically fractal dimensions of spin and growth models [24]. 
The values found for D by that method are very close to the exact ones determined here. 

For the  red bond and hull fractal dimension we can only use results for q = 2 [5] 
and q = 4 [7]. Yet, knowledge of c and equation (6) lead almost uniquely to the 
conjectures: 

D ~ = ~ , + i , , + i = ( 3 m + 2 ) / 2 ( m + l )  (10) 

D, = Y - + ~ , ~ + ,  = (-4m +3) /2m(m + I ) .  (11) 

and 

The red bond dimension D, turns out to be negative for 1 s q < 4. This is consistent 
with our RG picture (figure 2) as it can be shown [7] that D, equals the RG eigenvalue 
in the p (or I) direction at the cluster fixed point, which clearly is negative. A negative 
fractal dimension can be interpreted in the following way: bonds which when consider- 
ing only a small part of the fractal seem to be red bonds, turn out not to be red bonds 
when the fractal is considered on larger and larger length scales. Therefore, on big 
enough scales, Potts clusters are 'fat' fractals containing no red bonds. Notice finally 
that for q = 1 ,  DR= -A gives a new exact result for bond percolation; it is the irrelevant 
exponent describing the RG flow near p = I .  The hull fractal dimension for q = 1 
becomes :, a result which is not immediately understandable because the usual hull 
dimension loses its meaning for a cluster occupying the whole lattice. The correct 
interpretation for D =$ foiiows if we extend recent work of Sen0 et ai [xi for lsing 
clusters to the Potts case. Then, it can be shown (details will appear elsewhere) that 
the hull dimension is also equal to the fractal dimension of a self-avoiding walk (SAW) 

which is restricted to be on a cluster of fixed spin state. This definition keeps meaning 
for q = 1, and in that case the dimension of the SAW is just that of one on a pure lattice 
which indeed equals $ [26]. 

function of q. These results extend similar results for king clusters and Potts droplets. 
One interesting dimension which so far remains undetermined, even in the simplest 
case of uncorrelated percolation, is the backbone dimension [12]. 

Several further interesting results can be obtained for q in the neighbourhood of 
4. Using selection rules from conformal invariance the precise form of logarithmic 
corrections can be found [27]. Then, using well established techniques [28] one can 
e.g. deduce that the percolative susceptibility (equation (9)) for the four-state Potts 
model diverges as 

I n  c , . m m . z n r  .ZIP h n x m  A n + n r m ; n n I l  C P I I P ~ I  Frnrtnl  Ilimnncinnr Fnr Dntt. cI. .o+o- ^" .I ... "".,.L..Y',, "* lIy.* .... >..." .,".".". I I U I L Y L  Y...I.,.IIIUI.I .U. L U L L . ,  I .YOLCI . ,  ',a ', 

x ( K ,  h = O ) -  tC7/611n ti-'!' (12) 
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for I - ( K  - K,(4)1+ 0. Details of this calculation, and other related results, will be 
given elsewhere. 

The author acknowledges support from the Program on Inter University Attraction 
Poles of the Belgian government. 
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